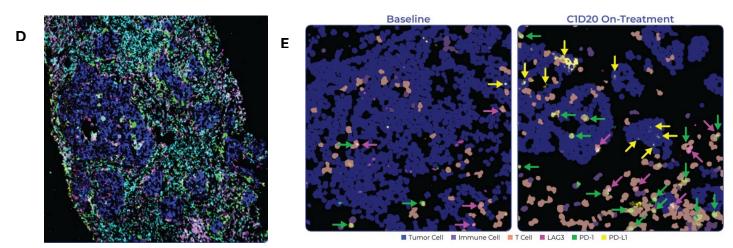

Unveiling the Immunological Impact of RBN-2397: A First-in-Class PARP7 Inhibitor in Cancer Therapy

Δ

The research team at Ribon set out to investigate the immunological effects of RBN-2397, a PARP7 inhibitor, in patients with advanced solid tumors. As part of a Phase 1 clinical trial, they aimed to understand how RBN-2397 reactivates Type I interferon signaling, enhances immune cell infiltration and increases checkpoint protein expression. The study focused on its impact across various cancers, including head and neck squamous cell carcinoma and hormone receptor-positive breast cancer.

The study's key findings revealed key immunological shifts post-treatment with RBN-2397:


- Increased immune infiltration: Significant increases in CD8+ T cells, M1 macrophages, and monocytes in the tumor microenvironment suggest an enhanced ability of the immune system to recognize and attack tumor cells, supporting sustained antitumor activity.
- Spatial proximity improvement: A marked reduction in the distance between immune and tumor cells allows for more effective immune engagement and destruction of cancer cells, promoting a stronger response.
- Checkpoint protein expression boost: Elevated levels of PD-1, LAG3, and PD-L1 indicate RBN-2397 primes tumors for greater responsiveness to immune checkpoint inhibitors, enhancing the potential for combination therapies.

A) MIBI-TOF cell classification images illustrate infiltration of multiple T cell populations, M1 macrophages, and monocytes into the tumor regions of on-treatment biopsies from the baseline and on-treatment biopsies of two lung cancer patients, Patient 2 (top) and Patient 5 (bottom). Quantification of the density of each cell type for three regions of interest per samples is shown on the right. **B)** Quantification of total signal density for the proteins of interest for the patient shown in panel A. **C)** Checkpoint expression increases observed in the three cohorts for PD-1 and LAG3 on T cells and PD-L1 on tumor cells across all biopsies via MIBI-TOF analysis (n = 14).

MIBI's Role in the Study: provided a critical detailed visualization and quantification of immune responses within the tumor microenvironment:

- Multiplexed immune profiling: Enabled simultaneous detection of multiple immune cell types, offering an in-depth understanding of the immune landscape and how various immune cells respond to RBN-2397.
- **Spatial context:** Revealed how immune cells, such as CD8+ T cells and macrophages, interact closely with tumor cells, which is imperative to understanding immune activation.
- **Quantitative analysis:** Provided reproducible, quantitative data showing significant immune cell infiltration and checkpoint protein expression changes after treatment.

D) Documented disease progression on immediate prior line of therapy (pembrolizumab and investigational STING agonist) • Baseline biopsy showed: • High CD8 and Granzyme B density (744 and 167 objects/mm2, respectively) • TMB = 2.5 muts/Mb; SMARCB1 deletion; MSS **E)** MIBI-TOF cell classification images illustrate increased expression of multiple checkpoint proteins in the on-treatment lung biopsy of an HNSCC patient. Images are representative of 12 (baseline) and 7 (on-treatment) regions of interest.

Impact on Cancer Therapy Development:

The study highlights RBN-2397's potential as a leading candidate for immunotherapy by enhancing immune cell infiltration, activating adaptive immune responses, and increasing checkpoint protein expression. These findings support its use in combination with immune checkpoint inhibitors, offering a promising path for more targeted and durable cancer treatments.

References

- First-in-Class Human Phase 1 Trial and Translational Study of the Mono (ADP-Ribose) Polymerase-7 (PARP7) Inhibitor RBN-2397 in patients With Selected Advanced Solid Tumors, Yap, T., AACR poster CT109, 2023
- 2. RBN-2397, a novel, potent, and selective PARP inhibitor, induces tumor-intrinsic Type I interferon responses and adaptive immunity in preclinical models and patient tumors, Kuplast-Barr, K., Abstract 866, SITC 2021
- PARP7 negatively regulates the type I interferon response in cancer cells and its inhibition triggers antitumor immunity, Gozgit, Joseph M. et al., Cancer Cell, Volume 39, Issue 9, 1214 – 1226.e10

