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SUMMARY
Despite most acute myeloid leukemia (AML) patients entering remission following chemotherapy, outcomes
remain poor due to surviving leukemic cells that contribute to relapse. The nature of these enduring cells
is poorly understood. Here, through temporal single-cell transcriptomic characterization of AML hierarchical
regeneration in response to chemotherapy, we reveal a cell population: AML regeneration enriched
cells (RECs). RECs are defined by CD74/CD68 expression, and although derived from leukemic stem cells
(LSCs), are devoid of stem/progenitor capacity. Based on REC in situ proximity to CD34-expressing cells
identified using spatial transcriptomics on AML patient bone marrow samples, RECs demonstrate the ability
to augment or reduce leukemic regeneration in vivo based on transfusion or depletion, respectively. Further-
more, RECs are prognostic for patient survival as well as predictive of treatment failure in AML cohorts. Our
study reveals RECs as a previously unknown functional catalyst of LSC-driven regeneration contributing to
the non-canonical framework of AML regeneration.
INTRODUCTION

Similar to other stem cell-driven cancers, acute myeloid leuke-

mia (AML) cells are assembled in a hierarchy. AML represents

an aggressive and heterogeneous hematological cancer charac-

terized by a block in differentiation that affects myeloid lineages

of the hematopoietic tissue.1,2 This results in an accumulation of

poorly differentiated blast cells in the patient bonemarrow (BM).2

From a treatment perspective, the major barrier in achieving dis-

ease-free survival of AML patients is maintaining a state of clin-

ical remission (CR) defined by less than 5% blasts3,4 and thus

preventing disease regrowth above this threshold. Subsets of

leukemic cells remain and survive in the BM post chemotherapy

that are capable of reinitiating disease and giving rise to relapsed

AML responsible for highmortality rates.5 The nature, properties,

and overall dynamics of the enduring cells that contribute to and

are responsible for the AML regeneration processes are poorly

understood. Altogether, this has limited consistent biomarker

detection to better manage patients post chemotherapy or to

develop novel targeted therapies for AML relapse.

Residual leukemic cells responsible for regeneration of dis-

ease post chemotherapy are believed to be enriched for

leukemic stem cells (LSCs) and define the basis of ‘‘canonical
Cell Reports Medicine 5, 101485, Apri
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AML regeneration’’ contributing to relapsed disease. LSCs are

considered to be at the cellular apex of this hierarchically ar-

ranged malignant tissue, and are operationally defined by the

ability to engraft and initiate patient-specific leukemia upon

transplant into immune-deficient mice.6,7 Features associated

with LSCs are quiescence and self-renewal, which supports

the notion that LSCs can evade the anti-proliferative chemo-

therapy bymaintaining a dormant state,8 and subsequently drive

canonical regeneration. As in vivo engraftment tests are labo-

rious and retrospective, molecular surrogate definitions of

LSCs using complex gene profiling have been devised.9,10 The

LSC-R9 and the weighted gene profile of LSC1710 were defined

by their ability to correlate to engraftment activity and overall sur-

vival (OS) of AML patients, respectively.9,10 However, findings of

recent studies using in vivo xenograft models have suggested

the involvement of elements other than LSCs in disease re-

growth, thereby transcending the canonical concept of AML

regeneration. These studies mimicked the clinical treatment of

AML in xenograft models and all observed reductions in LSC

numbers and quiescence following chemotherapy,11–13

providing collective evidence that properties of self-renewing

cells, quiescent cells, and immunophenotypically primitive cells

are in fact depleted following chemotherapy treatment in
l 16, 2024 Crown Copyright ª 2024 Published by Elsevier Inc. 1
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patients, patient-derived xenograft (PDX) models, and in vitro

models of AML.11–13 These observations suggest non-canonical

alternative mechanisms contribute to the complexity of AML

regeneration12,14 and underscore the need for further character-

ization into the complex nature of AML regeneration post

chemotherapy treatment vs. naive LSC states.

To date, the cellular and molecular basis of AML regeneration

post chemotherapy has yet to be sufficiently resolved to combat

disease relapse. We propose that the cellular processes of AML

regeneration are not only complex, but temporally dynamic in

nature, including changing molecular and cellular profiles in

response to chemotherapy. In this case, biological processes

would be best captured by evaluating multiple time points of

regeneration using detailed molecular analyses paired with func-

tional assays shortly after chemotherapy treatment. Temporal

analysis using human-mouse PDX models and single-cell tran-

scriptomics has revealed a subset of non-stem/progenitor

accessory cells that act as a catalyst for AML regeneration

with functional and clinical prognostic properties that contribute

to non-canonical framework of AML regeneration operating in

conjunction with LSCs.

RESULTS

Temporal analysis of AML PDXs following
chemotherapy captures cellular dynamics of disease
regeneration
Cytarabine (AraC) is the backbone of the standard of care in AML

treatment4,15 and has been used to model chemotherapy treat-

ment in xenografts,11–13 as other agents given to AML patients,

such as daunorubicin, are toxic in xenografts.13 AraC is a pyrimi-

dine nucleoside analog and functions in a non-specific fashion to

target highly proliferative cells.16 We modeled AraC treatment

through a 5-day administration mimicking clinical use in patients,

as shown previously13 in AML PDX initiated from six patients

with diverse European Leukemia Network (ELN)1 stratification

(AML1-6, Table S1). Once AML disease was established in recip-

ient mice, the dynamics of AML response were analyzed at three

sequential timepoints post treatment (days 7, 10, and 14). Disease

burden (total number of AML cells [hCD45+% * total harvested

cells]) was analyzed throughout the follow-up time points post

chemotherapy treatment in PDXs derived from all patient samples

(Figures 1A and S1A). The dynamics of these changes were vari-

able across patients, consistent with our expectations that multi-

ple time points of analysis are required to capture the true cellular

kinetics of AraC-induced cytoreduction and subsequent regener-

ation. Absolute PDX response to chemotherapy was patient spe-

cific (p < 0.05, two-way ANOVA) and supported the separation of

patients into categories of responders vs. non-responders based

on the disease burden in the AML PDXs: responders being statis-

tically reduced (PDXs: AML1, AML4) and non-responders being

non-statistically reduced (PDXs: AML2-3, 5–6) following AraC

treatment (Figure 1A). This distinction correlated to AML patient

outcomes, where PDX responders entered CR after induction

treatment, while PDX non-responders failed to enter induced

CR, which broadly correlated with predicted outcome based on

ELN classification (Figure 1A). An alignment of clinical metrics to

chemosensitivity in PDX models has not been reported in experi-
2 Cell Reports Medicine 5, 101485, April 16, 2024
mental settings to date, and possibly observed here due to maxi-

mized chemosensitivity time points compared among patients.

This is exemplified in AML patient 1 PDXs, where a single

follow-up at day 10 would not capture the acute cytoreduction

shown at day 7 and would otherwise be incorrectly classified as

a non-responder (Figure S1B).

With kinetics of AML regeneration biologically established

in vivo, we used this foundational data to understand the molec-

ular dynamics of AML cells during regeneration. Using droplet-

based single-cell RNA sequencing (scRNA-seq), we generated

libraries from non-responder (AML2 and AML3, ELN intermedi-

ate and adverse, respectively) and responder (AML1, ELN inter-

mediate) PDXs at days 0, 7, 10, and 14 post chemotherapy treat-

ment, as well as at the ethical endpoint of each recipient

xenograft (summarized and depicted in Figures 1B, S1D, and

S1E). To ensure AML-specific features could be distinguished,

we performed parallel experiments using healthy hematopoietic

stem cells (HSCs) from umbilical cord blood (CB) engrafted in

PDXmice to obtain healthy control cells before and after chemo-

therapy treatment in vivo (Figure S1F). We merged a total of 42

resulting PDX samples used for scRNA-seq by batch correcting

and integrating using the Seurat integration package,17 with

healthy BM scRNA-seq data as a reference anchor (Figure S1C).

Resulting individual cell gene expression could be summarized

by stratification into 26 transcriptionally defined cell clusters (Fig-

ure 1C). Greater variability of clusters throughout time points

post chemotherapy was qualitatively observed in AML1 PDXs

(responders) as compared with AML 2 and 3 PDXs (non-re-

sponders) (Figure 1D). To provide quantitative temporal evalua-

tion for each cluster over time, a metric of cluster volatility was

utilized: 1 – (Lowest % over time/highest % over time) for each

shared cluster from all three AML patients (Figure S1G). Cluster

volatility over time was found to be significantly higher in the re-

sponding AMLs as compared with the non-responding AMLs,

indicative of greater transcriptional change in AML disease cells

that effectively respond to therapy, whereas non-responsive dis-

ease reflects reduced transcriptional changes accompanied

with disease retention. These analyses provide a basis to dissect

graded responses of AML disease to chemotherapy and tran-

scriptionally define potential cell entities involved in the dynamic

destruction and subsequent regeneration of the human AML

hierarchy.

Identification of transcriptionally assigned cells that
correlate to functional states of regeneration in PDX
models: Regeneration enriched cells
AML disease is suggested to be organized in a hierarchy sus-

tained by LSCs at its apex. This same disease hierarchy can

be established in immunodeficient mice by leukemic initiating

stem cells upon transplantation of cells from AML patients,

and the resulting surrogate murine recipient can be treated

with chemotherapy.11–13 Aside from level of leukemic burden

measured in PDX models by amount of human leukemic cells,

the activation state of leukemic regeneration was shown to faith-

fully be represented by leukemic progenitor activity.13,18 Accord-

ingly, both leukemic burden and progenitor activity were used as

metrics to identify the biologically relevant time points of (1) cy-

toreduction and (2) subsequent regenerating AML (Figure S2A).
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Figure 1. scRNA-seq data on frequently sampled AML xenografts following cytarabine treatment identifies unique kinetics and defines both

responding and non-responding PDXs

(A) Disease burden (hCD45Chimerism * Total Cells Harvested) represented bymean ±SD fromPDXs at day 0 (‘‘Untreated’’) and at the lowest disease burden time

point (‘‘Cytoreduced’’) normalized to Untreated AML1-6, sorted by ELN stratifications, clinical outcome, and responder status (N = 6, n = 31 untreated, n = 18

treated).

(B) Experimental overview of data generating panels (C) and (D): De novo patient tissue and hCD45+ BM harvested from three patient-matched PDXs at each

noted time point underwent scRNA-seq with cell multiplexing, immunophenotyping, functional assays, and cellularity assessments. UMAP plots of cells from all

time points of AML1-3 PDXs organized by (C) transcriptionally defined cell cluster ID and by (D) time point. ****p < 0.0001, *p < 0.05, ns p > 0.05 by unpaired t tests.

See also Figure S1 and Table S1.
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In vivo biological readout of AML disease was matched to sin-

gle-cell transcript profiling derived from the same PDX for each

time point to identify transcriptomic patterns and clusters asso-

ciated with AraC resilience and leukemic hierarchical regenera-

tion. Using deep functional and scRNA-seq analysis, AML1

and AML2 were selected as representative responding and

non-responding patients, respectively. The greatest disease

burden reduction was identified at day 7, signifying the lowest

threshold of cytoreduction, whereas peak leukemic AML pro-

genitor frequency signifying regeneration, was detected at day

10 in the responder and day 14 in the non-responder

(Figures 2A and 2B, S2B–S2E). Nearly all clusters were depleted

following chemotherapy exposure after incorporating a disease

burden metric (cluster proportion * total AML cells harvested;

Figure S2F) based on three PDX recipient mice for each time

point for each patient (Figures 2A, 2B, and S2F). Similar results

were obtained using unbiased categorization methods to assign

cell type assignment to each cell,19 which also revealed each cell
type was diminished following chemotherapy (Figure S2G).

Collectively, these results indicate that cytoreductive chemo-

therapy targets the complete array of cells of the AML hierarchy

without prejudice. Despite cytoreduction of AML cells in

response to chemotherapy, clusters with the least reduction af-

ter chemotherapy were identified in cluster 5 in AML1 and cluster

1 in AML2 and these same clusters were also the most enriched

at corresponding regeneration time points (Figures 2C and 2D).

Cluster 5 was preferentially enriched at functional regeneration

by 68-fold in responding AML (Figure 2C, n = 3), whereas cluster

1 from the non-responding AML was enriched by only 1.3-fold

(Figure 2D, n = 3). To avoid artifacts from single PDXs, each

time point consisted of three pooled PDX biological replicates

and confirmed that cluster dynamics were consistent across

pooled biological replicates by cell multiplexing analysis (Fig-

ure S2H). Cluster 1 was highly prevalent before and after chemo-

therapy in AML2 PDX recipients, consistent with the expected

dampened response to chemotherapy in non-responders. In
Cell Reports Medicine 5, 101485, April 16, 2024 3
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Figure 2. Cluster 5 and cluster 1 are most enriched at functionally defined biologically relevant time points in AML1 and AML2, respectively

(A and B) Disease burden (Total cells harvested * %hCD45; dark gray) and progenitor frequency (#colonies/cells seeded; light gray) during and following a 5-day

AraC treatment in (A) AML1 PDXs and (B) AML2 PDXs, overlayed with UMAP plots of scRNA-seq data (n = 3 per time point per AML sample [AML1 pooled]) from

the same cell pool that derived the functional progenitor frequency and disease burden data throughout the time course.

(C and D) Bar graphs of the fold enrichment of each substantive cluster at untreated vs. regeneration time points for AML1 (n = 3, pooled) and AML2 (n = 3). Color

of bars represents a metric of cytoreduction magnitude [Log10(Cluster% Untreated/Cluster% Cytoreduced)].

(legend continued on next page)
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contrast, cluster 5 emerged almost exclusively during AraC

treatment in chemotherapy responsive AML patient xenografts.

Given the correlation of these clusters with AML regeneration

kinetics in vivo, we termed clusters 1 and 5 as regeneration

enriched cells (RECs). Transcriptionally, RECs resemble non-

cycling monocyte-like profiles (Figures S2I and S2J). Gene

expression profiles of RECs (Data S1) showed enrichment

of proinflammatory and oxidative phosphorylation profiles

by gene set enrichment analysis (GSEA) of HALLMARK,

REACTOME, WIKI, and KEGG pathways (Figure S2K), a feature

previously observed in cytarabine response andAML disease re-

growth.11,12,20,21 To explore the applicability of REC clusters 1

and 5 to functional AML regeneration, we expanded our analysis

to an interpatient level to include all PDXs with paired scRNA and

functional datasets, AML1-3 (Figures 1A and S1E; N = 3, n = 7).

Fold enrichment of REC clusters directly correlates to themagni-

tude of graft regrowth, as measured by total leukemic cells from

day 7 to day 14 (Figure 2E). Even though REC clusters were

derived from distinct chemotherapy responses across patients,

our findings show consistent correlation between emergence

of RECs in all AML PDXs with functional leukemic growth. Using

similar analysis, no other clusters were found to positively corre-

late to the magnitude of AML graft regeneration (Figure 2F). The

magnitude of REC cluster emergence as a direct function of AML

graft regrowth aggressivity suggests RECs may represent

unique cell types involved in AML regeneration.

RECs in patient-derived diagnostic tissue predict
clinical outcomes and are immunophenotypically
defined by CD68/CD74 expression
To evaluate the relevance of PDX-generated REC profiles (clus-

ter 1 or 5), we examined whether RECs could be observed in

AML patients. scRNA-seq analysis was applied to de novo sam-

ples of AML patients 1, 2, and 3, and scRNA-seq data were inte-

grated and batch corrected with patient-matched PDX scRNA-

seq data for all AML xenograft time points used (n = 39).17 This

was performed on a per-patient basis to reduce variability that

may arise from inter-patient heterogeneity.1,22 In all AML patients

examined, RECs previously identified in PDXs were highlighted

(Figures 3A and S3A dark red) and primarily assigned to a single

cluster for each AML patient. Transcriptionally similar cells from

de novo sources were present within these clusters (Figures 3A

and S3A dark blue), indicating on a transcriptional level the RECs

are present in patients at diagnosis. The ability to identify PDX-

derived RECs as a transcriptionally definable entity in AML pa-

tients demonstrates that RECs are not a generated artifact of

AraC treatment or PDX modeling.

To characterize REC properties potentially shared among

AML patients, we identified differentially expressed genes

(DEGs) of de novo sourced RECs (Figure 3B, Data S1) compared

with all de novo cells from each AML patient. This revealed a total

of 71 DEGs that were common among AML1-3, which we

termed the Regeneration-71 score (Regen71) (Figure 3B, Data
(E) Correlation plots between fold enrichment of clusters 1 and 5 at untreated v

compared with fold increase of total AML cell burden at day 7 to day 14.

(F) Bar graph of the correlation coefficient (R2 value) from linear regression analysis

a correlation that is significantly non-zero (p > 0.01, light gray bars) or not signifi
S1). To be thorough and to ensure we are capturing the same

biological phenomena in all three patients, de novo scRNA data-

sets from AML patients 1 to 3 were merged with two non-

leukemic BM donor samples (BM1 and BM2) and re-clustered

to best capture interpatient variability (Figure S3B). Accordingly,

cluster numbers from this dataset were denoted with a prime

symbol to differentiate from PDX datasets (Figures 1, 2, and

3A); cells from all samples could be stratified into clusters 00–
170 (Figure S3B). Previously identified RECs from AML patients

1, 2, and 3 at regeneration cluster together within newly assigned

cluster 00 (Figure S3B). Cluster 00 hosted 653 upregulated genes

(Data S1), which contained the previously identified Regen71.

The Regen71 is a gene score that represents the biological

process of leukemic regeneration. Based on this and its absence

of primitive gene expression (Figures S2I–S2K), this likely repre-

sents a distinct biological entity other than AML LSCs. To

examine the value of the Regen71, we performed multivariate

cox regression analyses on three publicly available gene expres-

sion datasets,23 separately accounting for both comparable mo-

lecular scores (LSC-R,9 LSC17,10 Data S1) and clinical covari-

ates (age, ELN stratifications, white blood cell [WBC] count). In

the TARGET-AML cohort (N = 1914), the Regen71 correlated

to both OS and event-free survival (EFS) (Figures 3C and S3C).

When filtering the cohort for patients who received the same in-

duction treatments, prognostic capabilities improved (Fig-

ure S3C). In the TCGA-LAML cohort (N = 151), the Regen71

also correlated with OS in the molecular analysis and ap-

proached significance in the clinical analysis (Figure S3D). The

Metzeler et al.23 (N = 79) patient cohort had none of the gene

scores achieve significance, although the LSC17 and Regen71

approach it (Figure S3D). In addition, the TARGET-AML cohort

was subdivided into the three ELN stratifications and the molec-

ular multivariate analysis performed revealed Regen71 to be the

most predictive in the ELN high-risk group (Figure S3E). Notably,

the Regen71 shows predictability of EFS and OS in both pediat-

ric and adult AML, indicating this gene score may be indepen-

dent of aging processes. Thus, the Regen71 provides a straight-

forward, and unweighted signature of genes to evaluate the

dynamics of human AML regeneration that have not been

explored to date and justifies further investigation into this score

and related biological processes.

We next aimed to use Regen71 gene profile to identify a puta-

tive REC immunotype, unlike LSC17 or LSC-R. Genes encoding

for putative cell surface markers of RECs were identified and us-

ing the criteria of gene expression strength (Average Log2

FC > 1) and commercially available well-established flow cytom-

etry (FC) antibodies. CD68, CD163, and CD44 were revealed as

candidate biomarkers (Figure 3D). To ensure gene expression of

candidates translated to protein expression, we cross-refer-

enced positive population frequency by FC on AML3 cells and

compared the frequency of de novo AML3 REC cluster

(Figures S3A and S3F) within scRNA-seq data on AML3 (19%).

CD68 was closest to the frequency at 13.3%, while the CD163
s. regeneration time point (Cluster% at Regeneration/Cluster% at Untreated)

from (E) from all shared and substantive clusters. The linear regression reveals

cant (p > 0.05, dark gray bars). See also Figure S2, Tables S1 and S2.

Cell Reports Medicine 5, 101485, April 16, 2024 5
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and CD44 (Figure 3D) failed to achieve precise cellular identity.

Similarly, in patient AML1, the proportion of the CD68 by FC re-

flected the proportion of the REC cluster in the scRNA-seq data-

set (Figures 3A and S3F). Accordingly, we selected CD68 as a

candidate biomarker for RECs.

To test whether the transient emergence of RECs is robust and

reproducible in external cohorts, we surveyed an additional 14

AML patient datasets. In three del(7) AML patients from Naldini

et al.,24 the CD68 enriched cluster (cluster 2) is temporally en-

riched 14 days following treatment initiation (Figures 3E and

3F). In another AML patient (AML38), a CD68 enriched cluster

(cluster 6) expands after an unsuccessful treatment (refractory

to treatment, Figures 3G and 3H). In a 10-patient NPM1mutated

AML cohort with paired NPM1 aberration mutational status,24 a

CD68-positive cluster (cluster 1) is temporally enriched 14 days

following chemotherapy initiation (Figures S3F and S3G). This

dataset exhibited multiple CD68+ clusters wherein NPM1 muta-

tional frequency varied (Figure S3G). Overall, the consistency of

REC emergence in diverse patients from other studies post

chemotherapy provides a promising pattern that necessitated

further investigation.

As CD68+ populations with lower frequency of leukemic muta-

tions were present in the NPM1+ AML 10-patient cohort24 (Fig-

ure S3H), we suggest that another biomarker should be included

to deplete CD68+ cells of the healthy hematopoietic system from

RECs. Using a de novo AML scRNA-seq dataset (Figure S3B),

we performed DEG analysis comparing cells within REC cluster

00 of AML1-3 with cells in REC cluster 00 from healthy BM donors

(Figure 3I). This revealed 543 enriched genes in the leukemic

fraction of cluster 00 (Data S1). Similar DEG analysis was per-

formed on the PDX scRNA datasets (Figures 1C, 1D, and S1C),

comparing the AMLPDX-sourced cells andCB donor xenografts

(clusters 1 and 5). A total of 1,003 genes were upregulated in the

AML PDX vs.CB xenograft in clusters 1 and 5 (Data S1), consist-

ing of a 420-gene overlap with AML-specific cells of cluster

00 (Data S1). This revealed CD74, CD81, CD63, and CD47 as

candidate cell markers, with CD74 having the highest Log2FC

average value. The double-positive CD74/CD68 protein expres-

sion profile was still consistent with the expected concentration

of patient-derived RECs of AML3 and is detectable as popula-
Figure 3. REC gene expression demonstrates predictive capacity of A

munophenotype

(A) Patient-specific UMAP plots of all PDX and de novo cells from AML1 highligh

(B) The 71 shared DEGs that overlap between RECs of AML1-3.

(C) Multivariate cox regression analysis on Regen71, ELN stratifications, age, and

(TARGET-AML, N = 1,914).

(D) Flow of narrowing down the Regen71 gene score to CD68 as a biomarker fo

(E) UMAP plots of cells from del(7) AML patients throughout treatment time cours

clinical time point, respectively.

(F) Bar plot of cluster composition of each time point of scRNA from (E). CD68+

(G) UMAP plots of de novo AML38 cells at diagnosis and when refractory to tre

treatment time point, respectively.

(H) Bar plot of cluster composition of each time point of scRNA from (G). CD68+

(I) UMAP plots of de novo REC cluster 00 colored by tissue source (healthy BM: n

tissue source (CB xenograft: n = 2,305, AML PDX: n = 9,403).

(J) Logic flow of narrowing down the shared DEG from (G) to CD74 as a biomark

(K) LogCD74 expression by RNA-seq represented by mean ± SD of AML patients

(***p < 0.001, Student’s t test), and CD74 expression by FC on AML patients (N =

and S2.
tions in newly diagnosed AML patients (Figures 3J and S4C,

N = 25). We validated CD74 as leukemia-specific marker using

RNA gene expression AML vs. healthy gene expression data

accrued by the MILE study21,25 (N = 543, N = 73 AML Healthy

BM respectively, p < 0.001 Student’s t test) and by FC (N = 2,

for AML and healthy BM, Figure 3K). We moved forward with

defining RECs by the CD74/CD68 immunophenotype. The com-

bined REC vs. malignant cells with AML vs. healthy cells com-

parison analyses provided a robust method of cell enrichment

that accounts for intra-patient heterogeneity and specificity to

AML disease vs. healthy hematopoiesis to provide a candidate

leukemic-enriching immunophenotype for RECs. These studies

allowed a departure from cell cluster profiling used to define

LSC17 and LSC-R, to cell entity based on cell surface markers

leading to cell isolation to purify cells for causal and functional

characterization of RECs.

Prognostic value of RECs in AML patient survival and
therapeutic response
Given the prognostic value of RECs by gene expression

(Regen71), we examined RECs defined by CD74+CD68+ cells

in clinical management and treatment response of AML patients.

Specifically, due to the derivation through association with func-

tional regeneration in response to cytarabine treatment alone,

we postulate that RECs may have clinical potential as a candi-

date relapse biomarker applicable to patients who were treated

with standard 7 + 3 chemotherapy (cytarabine and daunoru-

bicin). A biomarker detectable at diagnosis that predicts whether

an AML patient will relapse after successful induction therapy

would be a valuable clinical tool, as it could inform clinical deci-

sion making such as prompting follow-up rounds of consolida-

tion therapy and hematopoietic stem cell transplants. REC

frequency was analyzed using tissue samples from 30 indepen-

dent AML patients from three distinct groups: Refractory to treat-

ment (N = 11), entered CR but relapsed (N = 10), and entered

long-term CR (N = 9) (Figure 4A). REC frequency (gating strate-

gies: Figures S4C and S4D) successfully stratified those patients

who remained in CR vs. those who eventually relapsed (p < 0.05,

Figure S4A), demonstrating potential as a relapsemarker detect-

able at diagnosis. RECs failed to stratify patients who suffered
ML patient survival, and RECs are defined by the CD74+/CD68+ im-

ting RECs from PDXs (dark red) from de novo tissue (dark blue).

WBC count with overall and event-free survival of an independent AML cohort

r RECs.

e (N = 3)25 with CD68-enriched cluster 2 highlighted, grouped by cluster ID and

cluster 2 highlighted in red emerged post chemotherapy.

atment with CD68-enriched cluster 6 highlighted, grouped by cluster ID and

cluster 6 highlighted in red emerged post chemotherapy.

= 1,123, AML sample: n = 2,696) and of PDX REC clusters 1 and 5 colored by

er for leukemia-specific RECs.

(N = 542) compared with healthy BM cells (N = 73) from leukemia MILE study

2) compared with healthy BM donations (N = 2). See also Figure S3, Tables S1
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Figure 4. RECs demonstrate clinical potential

(A) Visual representation of experimental design (N = 30).

(B) Boxplots of %CD74/CD68 population relative to monocytic population (CD45highSSChigh) of patients who entered remission (N = 9) compared with patients

who relapsed after remission (N = 10).

(C) The %CD74/CD68 population relative to monocytic population (CD45highSSChigh) of patients who entered remission (N = 9) compared with patients who

experienced either form of treatment failure (relapse or refractory, N = 21). ROC curves comparing the predictive capacity of (D) relapse and (E) treatment failure of

%CD74/CD68:Monocytes ratio, CD34, cKit, and blast%. The greatest AUC value for both clinical outcomes was %CD74/CD68:Monocytes. (B) and (C)

***p < 0.001, **p < 0.01 by unpaired Student’s t tests. See also Figure S4 and Table S1.
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general treatment failure (both refractory and relapse) from pa-

tients who remained in remission (Figure S4B). Asmyeloid leuke-

mias can occur at many stages of primitiveness within the

leukemic hierarchy, including leukemias that are molecularly

similar to RECs (monocytes), we hypothesized that normalizing

REC percentage to the monocytic compartment percentage
8 Cell Reports Medicine 5, 101485, April 16, 2024
of each respective AML will relieve some complexity of interpa-

tient heterogeneity. Based on standard monocytic CD45bright

SSCbright gates within all live cells (Figures S4D and S4E), the

REC:monocyte ratio improved the prognostic value of RECs

(Figure 4B) and expanded the prognostic capacity of RECs to

stratify overall treatment failure from sustained remission
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(Figure 4C). Flow cytometric presentation of RECs was found to

be heterogeneous between patients in either the blast gate vs.

monocyte gate (SSC hCD45 gating, Figure S4F), andwe suggest

that RECs play a vital role in AML biology support independent of

AML differentiation status. To examine the value of the REC:

monocytemeasurement, we conducted receiver operating char-

acteristic (ROC) analysis. ROC represents a well-established

methodology for assessing viability of a clinical diagnostic tool,

as it takes into consideration false positive/negative rates and

eliminates biases of arbitrarily drawn thresholds to produce an

area under the curve (AUC) value that summarizes the utility of

the assay. Using AUC values from ROC curves we found REC:

monocyte ratio predicted both relapse (Figure 4D) and treatment

failure (Figure 4E) better than blast%, and primitive marker

expression (CD34 and cKit) in this 30-patient cohort. The REC:

monocyte ratio had an AUC of 0.867 and 0.857 for predicting

relapse and treatment failure, respectively, widely regarded as

a strong predictive assay.26 Accordingly, our results indicate

the REC immunophenotype has prognostic value for both OS

and therapeutic response of AML patients.

RECs are devoid of intrinsic stemness capacity but have
in situ proximity to putative CD34+ LSCs
To examine the relationship of RECs to LSCs, we performed FC

analysis of RECs alongside conventional primitive leukemic cell

immunophenotypes (CD34, CD90, CD117, CD123, CD38, and

Tim3). Apart from Tim3, there is no enrichment of these markers

on REC cell populations (Figures S5A and S5B), suggesting

these RECs are a distinct biological entity. However, as features

of stemness are defined functionally and not by correlative im-

munophenotypes, human CD74+CD68+ RECs were purified by

fluorescence-activated cell sorting (FACS) and showed depleted

LSC activity by either colony-forming unit (CFU) (progenitor) or

xenotransplantation (LSC) assays (Figures 5A and 5B). To char-

acterize the origin of RECs, patient-specific mutations were

analyzed in purified RECs. These analyses demonstrated RECs

are enriched for patient-specific leukemic mutations (N = 4, Fig-

ure 5C, Table S2) revealing human AML-derived RECs are of

leukemic origin and are differentiation products of LSCs.

Although dissimilar to LSCs by transcript, immunophenotype,

and function, we observed an enrichment of REC high patients

in LSC17 high patients compared to LSC17 low (Figure S5C),

suggesting patients with greater RECs also contain greater

numbers of LSCs. Consistently, within the TARGET-AML cohort,

patients who have over themedian score of Regen71 (REC+) and

LSC17 (LSC+) have dismal EFS and worse ELN stratifications
Figure 5. RECs demonstrate no stemness capacity and co-localize to

(A) Representative flow plot of hCD45 and CD33 expression in BM aspirates from

(B) Bar graph of mean ± SD of CFU frequency (#colonies/cells seeded) of FACS-p

AML patient MNCs.

(C) Bar graph of leukemic mutation VAF of FACS-purified CD74+/CD68+ cells co

(D) Whole H&E-stained tissue and representative images with and without spot o

(E) Spots of CD74+/CD68+/CD34+ co-expression overlayed onto whole tissue se

without CD74+/CD68+/CD34+ co-expression. Scale bars, 50 mM.

(F) Xenograft BM sections of engrafted CB and AML, with hCD74 hCD68 hCD3

CD68+ cells and CD34+ are highlighted in white.

(G) Bar graph of the mean +/- SD distance between CD74+/CD68+ and CD34+ c

Figure S5, Table S1.
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compared with REC+/LSC�, LSC+/REC�, and REC�/LSC� pa-

tients (Figures S5D and S5E).

Based on these combined characteristic features of RECs, we

postulated that RECs may serve as localized accessory cells to

support leukemic stem/progenitor cell-driven disease regenera-

tion. To examine this in situ, we used spatial transcriptomics

analysis from four donated human trephine BM samples (two

from AML patients vs. two from healthy donors). Tissues were

H&E stained, and verified for expected differences between

healthy donors and leukemic patients such as BM fat content27

and BM blast invasion (Figures 5D and S5F). This approach

has each transcriptionally defined area of 50 mm in diameter (Fig-

ure 5D) and was used to investigate whether there are areas that

contain both RECs and LSCs. We used CD68+/CD74+ transcript

expression as a surrogate probe to define RECs in this analysis.

LSC17 or LSC-R gene scores do not represent single-cell en-

tities, but instead are powerful prognostic profiles and molecular

definitions of putative LSCs derived through bulk cell assays and

curated based on correlation to patient survival. As such, CD34

was chosen as a surrogate marker to represent LSCs and was

shown to correlate to LSC17 signatures in previous studies.18

All tissues contained areas with CD74, CD68, and CD34

expression (Figure S5G) but only BM from AML patients had

areas that overlapped CD74/CD68 and CD34 expression (Fig-

ure 5E). Representative images of REC/CD34+ proximity reveal

consistency in tissue and morphology as compared with other

regions of AML BM (Figure 5E). In sharp contrast, healthy BM

sections were devoid of co-proximity of CD74+CD68+ and

CD34+ cells. This suggested that CD74+/CD68+ cells may phys-

ically localize to CD34+ primitive cells in AML disease. To confirm

that the proximity of RECs in AML patients was not a product of

increased expression of markers within leukemic tissue, we

examined the amount of CD74/CD68 expression within CD34+

and CD34� areas. CD34+ areas had higher CD74 and CD68

expression as compared with CD34� areas, while this pattern

was absent in healthy tissues (Figure S5H), confirming a leuke-

mia-specific proximity of RECs and CD34+ cells. Last, we

wanted to ensure proximity was not due to CD34+ cell prolifera-

tion and differentiation into RECs and assessed the level of pro-

liferation in relation to REC/CD34+ proximity. We have combined

three transcript markers of cell cycle (Ki67, CDK2, and PCNA) as

a measure of proliferative index (Figure S5I). Using this index, we

quantitatively compared proliferating vs. non-proliferating areas

compared with areas with and without REC/CD34 proximity. In

two AML patients examined, we found no significant difference

in distribution in locations of proliferation (p = 0.27, Fisher’s Exact
CD34+ cells within leukemic tissue

PDXs 8 weeks post intra-femoral injection with RECs (n = 11, N = 3).

urified CD74+/CD68+ cells and bulk AML patient MNCs normalized to average

mpared with control MNCs.

verlays of BM tissue from AML patient 11 and BM donor 4. Scale bar, 100 mM.

ction of AML BM11, and four representative images each from areas with and

4 immunofluorescent labels by MIBI-TOF methodology. Examples of CD74+/

ells in the AML vs. CB xenograft BM (****p < 0.0001, Student’s t test). See also
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Test), suggesting proximity of RECs to primitive leukemic cells in

patients is independent of proliferative status of these cell types.

As this analysis is limited to area and transcript, we further inves-

tigated potential co-localization of RECs and CD34+ cells at the

single-cell protein level in PDX mice. To achieve this, we applied

multiplexed ion-beam imaging by time of flight (MIBI-TOF)28

technology to BM tissue sections of AML vs. CB xenografted

mice (Figure 5F). RECs represented by CD74+CD68+ cells

were found to be in closer proximity to CD34+ cells in the AML

xenograft as compared with the CB xenografts (Figure 5G).

While it is historically the most robust surrogate marker of

LSCs, using CD34 in this analysis has its shortcomings, as

CD34� LSCs exist and CD34+ cells that are not LSCs have

been identified. However, to maintain consistency between con-

ditions preserving comparative values in this analysis, we used

the same markers for LSCs and healthy HSCs mainly due to an

absence of precise markers that effectively discriminate LSCs

from HSCs. Nonetheless, these observations collectively sug-

gest leukemia-specific proximity of CD74+CD68+ cells and

CD34+ primitive cells, and a potential support role for RECs in

AML regeneration that forms the basis of functional testing.

RECs catalyze leukemic regeneration by supporting
LSCs
To functionally examine the properties of RECs, we assayed

leukemic activity in both cellular loss and gain-of-function exper-

iments. RECswere depleted fromAML samples via FACS (repre-

sentative FACS plots Figures S6A–S6C) and limiting dilution

transplants (LDAs) were performed on the REC-depleted AML

samples as compared with the unfractionated samples to obtain

LSC frequency with and without RECs present (N = 2, Figure 6A).

Notably, this experiment was designed by creating the unfractio-

nated population by re-combining sorted RECs and REC-puri-

fied populations to their initial proportions to avoid any biases

introduced by FACS. Although RECs are devoid of any intrinsic

LSC capacity, REC-depleted AML samples contained less func-

tional LSCs (Figure 6B), suggesting removal of RECs reduced

supportive function to LSCs for survival and disease regenera-

tion in vivo.

In cellular gain-of-function experimentation, the proportion of

RECs present during leukemic regeneration was increased by

transfusion of excess RECs. Between 50 and 80k FACS-purified

patient-matched RECs were intrafemorally transfused (or cell

number matched REC-depleted cell control) into patient-

matched AraC-treated PDXs 2 days post chemo exposure

(N = 3, Figure 6C, representative FACS plots Figures S6A–

S6C). As RECs are non-self-sustaining, we postulated a tran-

sient increase of hCD45% following transfusion and traced the

leukemic graft growth for the next 14 days (Figure 6D) by
Figure 6. RECs catalyze leukemic regeneration by supporting LSCs

(A) Experimental visual of REC loss of function limiting dilution analysis experime

(B) Bar graph of estimated AML LSC frequency when RECs are depleted, presen

(C) Experimental visual of REC gain-of-function transfusion experiment.

(D) Growth of AML grafts before, during, and after REC or control transfusion (N =

with control conditions calculated by

(E) change in chimerism from transfusion time point to readout time point (13–16

growth fits (N = 3, Student’s t test, **p < 0.01, *p < 0.05). See also Figure S6, Ta
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comparing the hCD45% chimerism before intrafemoral transfu-

sion and 14 days later. REC-transfused grafts had a greater

change in engraftment levels compared with REC-depleted

transfused grafts (Figure 6E), and a greater growth rate calcu-

lated by the doubling time of the exponential curve fit (Figure 6F).

This increase in AML regeneration in the presence of additional

RECs demonstrates RECs augment leukemic growth following

chemotherapy exposure. To determine whether the increase in

chimerism was cell-extrinsic in nature, RECs were transfused

into non-engrafted AraC-treated mice. No hCD45% chimerism

was detected in these mice (Figure S6D) and therefore any

growth from REC transfusion is non-cell autonomous. Notably,

these experiments were performed using AML patients exposed

to chemotherapy vs. untreated patients, with similar effects of

augmenting AML regeneration with addition of RECs. Accord-

ingly, although derived through enrichment following chemo-

therapy exposure in PDX models, these results indicate RECs

play an LSC support cell function independent of chemotherapy

exposure.

Overall these findings reveal RECs have prognostic and clinical

utility beyond long-term survival outcomes alone, including

revealing new and more precise targets that are not restricted to

various LSC populations transcriptionally profiled previously.29–31

DISCUSSION

Our study identifies an accessory population of leukemic pa-

tient origin that acts like a catalyst for AML regeneration post

chemotherapy. RECs have functional and prognostic value

and may be due to the original approach used to identify

RECs in our study that examine acute responses to regenera-

tion following chemotherapy. These dynamics, originally

defined in PDX models of AML regeneration, would be masked

when performing molecular analysis on static patient samples

obtained at defined stages of therapeutic management, e.g.,

Dx, CR, and relapse. Functional and molecular characterization

of RECs is consistent with a non-autonomous role of leukemic

CD74+CD68+ RECs for stem cell-driven AML regeneration. This

adds to the mounting evidence for non-canonical cellular

mechanisms of leukemic regeneration and disease relapse in

response to therapy. The biological and clinical relevancy of a

non-primitive gene score for RECs departs but collaborates

with conventional canonical viewpoints of LSC-based AML

regeneration. Our findings contribute to the foundational work

from several studies identifying non-stem/progenitor gene

expression properties that correlate to leukemic chemo-resil-

ience and regeneration,11–13 and thatmore differentiated leuke-

mias can have worse overall outcomes and treatment response

to venetoclax,32,33 but these studies remain disconnected. As
nt.

t, and isolated (N = 2).

3) AML growth is greater in PDXs that received REC transfusions as compared

days) and by (F) growth rate (doubling time per day) calculated by exponential

ble S1.
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RECs are enriched for gene expression patterns identified in

these separate reports, including cellular senescence, inflam-

mation, oxidative phosphorylation (Figure S2K), and the

leukemic regenerating cell gene score, RECs provide a basis

for consolidation of these previously unlinked observations in

AML.11–13 Furthermore, RECs allow an immunophenotypically

definable cellular entity to be investigated and utilized, thus ex-

tending beyond the limited use of gene expression profiling. As

sources of gene expression upregulation may be ambiguous

and could be due to cellular response to chemotherapy expo-

sure and not innate chemo-resistance, functional demonstra-

tion of immunophenotypically purified REC regeneration

augmentation (Figure 6) leaves less ambiguity for future study

and REC translational impact. To our knowledge, this is the first

AML single-cell transcriptomics analysis that has resulted in the

identification of an immunophenotypically defined cell involved

in disease regeneration, as well as the initial demonstration

of a role for non-stem/progenitor cells of leukemic origin to

contribute to AML disease.

Our findings are based on our study’s approach that incorpo-

rates multiple post-chemotherapy time points and paired func-

tional stem cell biology assays necessary to define the unique

transcriptomic profile of transiently cytoreduced leukemia and

leukemic graft regeneration. AML regeneration post chemo-

therapy allowed temporal tracking of both disease burden and

progenitor activity during leukemic graft recovery to obtain a

non-patient-specific gene score predictive of OS, EFS, and

treatment response in independent patient cohorts. Notably,

neither transcriptional REC clusters, nor their derived gene

scores, exhibit similarity to primitive gene expression. As

such, RECs serve a cellular therapeutic target with a defined

phenotype that possesses prognostic value to AML patients

as a biomarker of therapy response and long-term survival.

Our results uncover a principle in AML disease suggesting can-

cer stem cell-driven regeneration is not solely cell autonomous

in nature and involves other complex cellular elements exempli-

fied by CD74+CD68+ RECs. This emphasizes the importance of

cell-extrinsic factors that support chemotherapy resilience in

stem cell-driven relapsed disease that may be applicable to

other tumors sustained by cancer stem cells.13,34 RECs may

represent a cellular bridge to the microenvironment for LSCs

as RECs are products of LSC differentiation to sustain leukemia,

and act as a survival response to chemotherapy injury that

target LSCs. As such, the incorporation of REC detection into

measurable residual disease (MRD)35 approaches could aid in

the precision and fidelity of MRD measurement by including

REC phenotype frequency alone or in combination with AML-

patient-specific DNAmutations and existing MRD phenotype,35

as opposed to binary absence or presence of mutation detec-

tion currently used. This would require future multi-site clinical

trials temporally following individual patients over months/years

for further validation and is part of the ongoing goals of our

group. Proximity of RECs to primitive leukemic cells requires

further study to determine if direct contact interactions or para-

crine signaling is involved in the supportive role of RECs to

leukemic regeneration. Furthermore, as spatial transcriptomics

may have value in disease treatment management using AML

patient biopsies, larger cohorts of patients with this analysis
may provide an approach to determine the prognostic value of

REC proximity to leukemic subsets.

CD74 has been associated with cancer progression,36,37

proinflammatory immune response,38 has been implicated in re-

generating tissues,39 and is considered a monocytic/macro-

phagic marker within the myeloid branch of the hematopoietic

system. Along with other cell types, differentiated cells of the he-

matopoietic system including macrophages and monocytes

help create the BM niche in a healthy hematopoietic system,34

supporting HSC survival and regulation. With an abundant role

in tissue repair,39 the expression of CD74 in leukemic regenera-

tion is consistent with the working theory that cancers are an

over-healing wound,40 and suggest leukemic transformation hi-

jacks healthy repair mechanisms for malignant growth and sup-

port by generating its own supportive cells. CD68 is a marker of

macrophages and has been implicated with tumor-associated

macrophages (TAMs) in AML.41 Although perhaps providing a

similar role, the leukemic origin of RECs (Figure 5C) separate

our findings from TAMs in AML disease. RECs are a product of

leukemic transformation that require altered states of differenti-

ation from normal hematopoiesis and are needed to survive

aggressive chemotherapy injury. This may signify a change in

the BM niche during leukemogenesis that preferentially supports

LSCs over HSCs.34 We propose that LSC-generated monocyte

andmacrophage-like blast cells likely support leukemic regener-

ation, perhaps through a leukemic BM niche-like support system

that remains to be understood. Nonetheless, directed therapies

toward leukemic-derived cells such as RECs via drug targeting,

antibody-based inhibition, or immunotherapy using CAR engi-

neering would provide a first-in-class approach for combating

AML relapse and warrants further investigation by the biomed-

ical community.

Limitations of the study
For PDXmodeling, we have used theNSGmousemodel, inwhich

only a fraction of AML samples engraft. Often, the samples that

engraft in NSGs are from patients who havemore aggressive dis-

ease. Therefore, there is an implicit skew toward aggressive AML

in the patient samples used for the REC identification via scRNA-

seq, andGOF LOF functional validation of RECs. It is important to

note that although functionally characterized, further in-depth ge-

netic or clonal analysis of RECs in AML patients is needed. There

is a possibility the RECs define, or are part of, a distinct molecular

subgroup of AML patients, which has yet to be properly investi-

gated. Furthermore, it is possible that other cells with different

molecular phenotypes also contribute to non-canonical regener-

ation outside of RECs, and/or RECs are currently a heteroge-

neous population the requires additional fractionation for various

supportive roles of LSC-driven regeneration. Despite these

caveats, RECs retain predictive capacity by gene expression

(Regen71) and immunophenotype (CD74/CD68), suggesting

RECs play a significant role in a large fraction of AML cases but

may be increasingly powerful should additional stratification of

AML patients be applied. Future studies will require biological

process of non-canonical regeneration to be investigated to ulti-

mately reveal exactly how RECs support and potentially interact

with primitive AML stem cell/progenitors that has not been pre-

cisely defined in our current study.
Cell Reports Medicine 5, 101485, April 16, 2024 13
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Mickie Bhatia (mbhatia@mcmaster.ca).

Materials availability
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Data and code availability
Single-cell RNA-seq and spatial transcriptomics data have been deposited at GEO and are publicly available as of the date of pub-
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patients23 can be accessed through the GEO: GSE12417 accession. Any additional information required to reanalyze the data re-

ported in this work paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary human samples
Healthy human hematopoietic cells were isolated from BM and mobilized peripheral blood of adult donors or from umbilical cord

blood. Primary AML specimens were obtained from peripheral blood apheresis or BM aspirates of consenting AML patients. AML

samples and adult sources of healthy hematopoietic tissue were provided by Juravinski Hospital and Cancer Center and London

Health Sciences Center (University of Western Ontario). The Labor and Delivery Clinic at the McMaster Children’s Hospital provided

healthy cord blood samples. All samples were obtained from informed consenting donors in accordance with approved protocols by

the Research Ethics Board at McMaster University and the London Health Sciences Center, University of Western Ontario. Details of

AML patient samples are outlined in Table S1. Mononuclear cells (MNCs) were recovered by density gradient centrifugation (Ficoll-

Paque Premium; GE Healthcare) followed by red blood cell lysis using ammonium chloride solution (Stemcell Technologies). Lineage

depletion of healthy hematopoietic samples was carried out using EasySep immunomagnetic cell separation (Stemcell Technolo-

gies), according to the manufacturer’s instructions. Flow cytometry analyses involving treatment success (Figure 4A) are of samples

retrieved at onset of AML diagnosis, and patients subsequently treated with standard induction chemotherapy regimens consisting

of 7-day infusions of cytarabine (100 mg/m2) plus daunorubicin on days 1–3 (60 mg/m2). To minimize variability, patients were

selected for this analysis that had not undergone hematopoietic stem cell transplants.

Trephine BMbiopsies (1.5–2 cm) were obtained from consenting AMLpatients enrolled under a bonemarrow transplantation study

(The Ottawa Hospital, Ontario, Canada) and from consenting healthy donors undergoing BM assessment for stem cell transplants

(London Health Sciences Center, University of Western Ontario) under the approval of the research ethics office of the Ottawa Health

Science Network Research Ethics Board (OHSN-REB, 20130729-01H) and London Health Sciences Center, University of Western

Ontario (IRB#00000940). Following collection of trephine biopsy, sample was stored in 10% neutral buffered formalin (NBF) for a

maximum of 24 h. The biopsy was washed 3 times in 1X PBS for a duration of 5 min per wash (Wisent Inc., Cat#311-010-CL) before

proceeding to embedding in paraffin according to standard histology procedures.

Murine recipients and xenograft assays
Mice were bred and maintained at the McMaster Stem Cell and Cancer animal barrier facility. All experimental procedures were

approved by the Animal Council of McMaster University. NOD/SCID or NSGmice were used as xenograft recipients, and xenotrans-

plantation was performed as previously described.13 Briefly, 6–10week old recipient micewere sublethally irradiated (315–325 Rads,

using a 137Cs g-irradiator) 24 h prior to intravenous transplantation of primary human samples. When NSG recipients were used,

primary human samples were CD3 depleted before injection. Both male and female mice were used, however sex (defined by chro-

mosomal genotype) was controlled within individual experiments. For limiting dilution analysis experiments, the highest dose of in-

jectionswas determined by using sample specific cell doses that had been previously known to engraft, and the lowest doses were at

least 20x less concentrated. Within an experiment, at least 4 doses were used per condition with at least two mice per condition/cell

dose combination. Within each experiment, each engrafting condition was injected into the same number of mice at the same doses

to minimize variability. In all xenograft experiments, 6–18 weeks following transplantation, BM cells were recovered by mechanical

dissociation and analyzed by flow cytometry. BM cellularity was quantified using trypan blue exclusion. To evaluate human cells of

xenografts in downstream analyses such as functional progenitor content and scRNA seq, xenografted human cells were purified by

fluorescence-activated cell sorting (FACS) on CD45+ andCD33+ co-expression, or bymouse cell exclusion usingmagnetic cell isola-

tion (mouse CD45 and mouse Ter119; Miltenyi Biotec) and subsequently seeded in methylcellulose (STEMCELL Technologies

H4434) or directly into the described 10X Genomics scRNA sequencing protocol. In experiments where residual human AML cells

were isolated for methylcellulose progenitor assays, cell seeding numbers were based on the total number cells recovered as

well as the known requirements for cell number input for the respective assays (characterized independently for different AML patient

samples). Longitudinal in vivo monitoring of human leukemic chimerism was carried out by serial BM aspiration. 5-10ml of BM cells

were collected from femurs of anesthetized recipient mice; when repeated, the procedure alternated femurs. For in vivo therapy

testing, mice were treated with AraC (Sigma-Aldrich) once human grafts were established (5–18 weeks post-transplant).

50 mg/kg AraC was delivered daily by subcutaneous injections over five consecutive days at doses optimized by both our group

and others.11,13 Bi-daily weight measurements were used to ensure that an appropriate dose per weight ratio was sustained

throughout each treatment. Mice were allocated to treatment groups based on pre-treatment BM aspirates, to ensure similar starting

levels of human chimerism across groups. If no initial assessment of chimerism was performed, mice were randomly allocated to

experimental groups, assuring that cage mates were distributed across different groups. When utilized, cell transfusions (Figure 6C)

were administered intrafemorally, two days following five-day AraC treatment and immediately following BM aspirations from the

same femur. To minimize the number of procedures, 2 days post-AraC hCD45+ readings were taken immediately prior (during the

same procedure) to the cell transfusion. Due to this, when allocating mice to transfusion treatment groups, hCD45+ chimerism infor-

mation was unavailable. Therefore, to limit variability across groups during these experiments, we used pre-chemotherapy hCD45+

percentages and split groups within cages. To assess results of transfusion experiments, BM was isolated via BM aspiration or
Cell Reports Medicine 5, 101485, April 16, 2024 e3
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mechanical dissociation of the non-injected femur 13–16 days (conditions within experiments were time matched) following intrafe-

moral transfusion. Cell number was matched per experiment, injecting between 50 and 90k cells (REC+ or REC depleted matched in

each experiment) per mouse in 30uL PBS (0.01% FBS).

METHOD DETAILS

Droplet based scRNA sequencing
30 scRNA sequencing experiments were performed directly on cells purified by the FACSAria II: hCD45+ CD33+ 7AAD-when from

xenograft source; 7AAD-when directly from patient tissue. During all preparation steps, cells were kept at 2-6�C. Manufactures rec-

ommendation’s (User Guide, CG000388) were following to create single cell libraries. When cell multiplexing was utilized

(PN#1000262), up to three samples were multiplexed into a single run, and samples that were multiplexed together were always bio-

logical replicates. Gene expression and cell multiplexing libraries were sequenced on the NovaSeq SP flow cell (TCAG, SickKids)

using the recommended parameters.

Spatial transcriptomics
Prior to performing spatial transcriptomics experiment, DV200 assessment was done on all the samples with a minimum criterion set

at 30%. RNA was extracted from paraffin curls (4 curls at 10 mm per tissue) using Qiagen’s RNeasy Mini Kit (Cat#74104). All working

space and instruments were treated with RNase zap (Invitrogen, Cat#AM9780) prior to RNA extraction, and gentle scoring was per-

formed around the tissue tominimize excess paraffin during curl collection. Spatial transcriptomics experiment was performed using

Visium Spatial Transcriptomics (10X genomics, Cat#1000185), following materials and methods according to the manufacturer’s

website (User Guide, CG000407). Gene expression libraries were sequenced on the NovaSeq SP flow cell (TCAG, SickKids) using

the recommended parameters. Analysis and visualizations were performed by manufacturer provided Loupe Browser. Co-localiza-

tion of putative LSCs to RECs was determined by areas of CD34+ expression AND areas that of CD74+/CD68+ expression (Expres-

sion >0 reads).

Bioinformatics pipelines
ScRNA sequencing reads were counted and aligned using Cell Ranger software provided by 10X Genomics. Individual scRNA

sequencing datasets were integrated, and batch corrected using Seurat’s integration protocol, and QCed using standard exclusion

metrics (%mitochondrial genes >3*SD + mediansample, (cell features < mediansample – (3*SD)). An integration anchor of healthy BM

was used when samples of different patient backgrounds were being merged to minimize variation on interpatient heterogeneity.

The K nearest neighbor clustering methodology was used to identify clusters in datasets described. Clusters were excluded from

analyses on a per sample basis if the percent of the cluster within the sample of the integrated dataset was less than the smallest

cluster of the sample dataset when not integrated with other data. We considered these clusters bioinformatic products of the inte-

gration protocol, called them non-substantive clusters, and thus were excluded from downstream calculations. Visuals were created

using the Seurat’s R package built-in visualization program. We followed manufacturers recommendations when utilizing the celldex

package for assigning cell types using data from the human primary cell atlas. We followed manufacturers recommendations when

utilizing the Seurat package for assigning cell cycle phase. The Seurat Package’s FindAllMarkers function was used to to perform

Wilcoxon rank-sum test to derive DEG (defined by Log2FC > 0.25, padj >0.01). Sequencing reads from spatial transcriptomics pro-

tocols were counted, aligned, and aggregated using manufacturer provided Space Ranger and Loupe Browser, following pipeline

provided by the manufacturer. Visualizations of these datasets were created using Loupe Browser and GraphPad Prism. Areas

were considered positive for a transcript if expression was detected, and considered negative if no expression was detected.

Fluorescence-activated cell sorting and flow cytometry
Immunophenotyping for human hematopoietic cell surface markers was carried out using the following antibodies: V450-conjugated

anti-CD45 (1:100; 2D1), APC-conjugated anti-CD33 (1:300; WM-33), PE-conjugated or APC-conjugated anti-CD34 (1:200; 581),

FITC-conjugated anti-CD19 (1:100; HIB19) and conjugated anti-CD117 (1:200). To evaluate candidates from our REC gene signature

at the protein level, we identified gene targets with available commercial antibodies that had been validated for flow cytometry. CD74

CD68, CD14, CD44, CD163. 7-aminoactinomycin D (7AAD, Beckman Coulter) exclusion was used to discriminate live cells and was

always used during cell sorting processes. When appropriate, fluorescence minus one control were used to optimize gating strate-

gies for target cell populations. For scRNA sequencing experiments directly from patient tissue, viable MNCs were purified based on

side scatter and forward scatter gating and 7AAD exclusion. To FACS isolate cells from PDXmodels for downstream applications of

scRNA sequencing and CFU assays, MNCs from human grafts were isolated by using forward scatter and side scatter gates, 7AAD

exclusion, and hCD45+ CD33+ gates. RECs were purified from primary AML samples using forward scatter and side scatter gates,

7AAD exclusion, and CD74+ CD68+ gates. Post-sort purities were routinely >95%. FACS sorting was performed using a FACSAria II

sorter, and flow cytometry analysis was performed with an LSRII Cytometer (BD), or CytoFlex LX (Backman Coulter). FACSDiva (BD)

and CytExpert were used for data acquisition, and FlowJo software (Tree Star) was used for analysis.
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MIBI-TOF processing and analysis
We sectioned tissues 4mm in thickness onto gold coated MIBIslides. The slides baked at 65�C for 1 h, followed by deparaffinization

and rehydration in sequential washes in xylene (3x), 100% ethanol (3x), 95% ethanol (2x), 70% ethanol (2x), andMIBI-water. Antigen-

retrieval in a pH 9 Target Antigen Retrieval Solution (DAKO Agilent) occurred at 125�C for 40 min in a Decloaking Chamber (BioCare

Medical). After cooling to room temperature, we washed the slides twice in TBS-T (IonPath). We incubated the tissue in a blocking

buffer consisting of 3% normal donkey serum (Jackson ImmunoResearch) in TBS-T for 20 min. We incubated the slides with block-

ing-buffer-diluted antibody panel consisting of metal-tagged antibodies supplied by IonPath overnight at 4�C in amoisture chamber.

After overnight incubation, we fixed the tissues and dehydrated in sequential washes in TBS-T (3x), 2% glutaraldehyde (5min), Tris

pH 8.5 (3x), MIBI-water (2x), 70% ethanol (2x), 90% ethanol (2x), 95x ethanol (2x), 100% ethanol (3x). We stored the slides in a desic-

cator prior to MIBIscope analysis. We collected spectral images of mouse femurs using an IonPath MIBIscope with Multiplexed Ion-

Beam Imaging technology. Xenon primary ions from a Hyperion ion gun rastered across the slide to sputter stained tissue into a

plume of secondary ions detected by mass spectrometry by time-of-flight to reconstruct the spectral images, on a pixel-by-pixel ba-

sis, of each channel consisting of a single stained antibody. A more detailed description of the Multiplexed Ion-Beam Imaging tech-

nology appears in Keren et al. (2018).42 With the assistance of a pathologist, 400 3 400mm fields of view (FOVs) inside the lesions.

Multiplexed raw image sets were denoised and aggregate filtered using IonPath’s MIBI/O and the default correction settings. These

processed image TIFF files represented the dataset. We performed nuclei segmentation with the input of the nuclear-stained and the

membrane-stained marker channels using Mesmer43 and we stored the segmentation mask images as TIFF files for further analysis

inMATLAB andRStudio.We extracted single-cell data for all cell objects defined by the segmentationmasks using a customR script

and packages as previously described.44–46 We asinh-transformed with a cofactor of 1. To classify cell types based on their marker

expression levels, we used the Bioconductor ’FlowSOM’ R package.47 The algorithm clustered the 534,012 total cells from the cohort

into 100 FlowSOM clusters. By inspecting a heatmap displaying normalized individual marker intensities, we annotated each of the

100 clusters into 16 meta-clusters, which included signatures that represented CD34+ cells and CD74+CD68+ cells for downstream

proximity analysis. We used the CytoMAP software48 to perform single-cell spatial analysis with the aim to determine the proximity of

CD74+CD68+ cells to all CD34+ cells present in the FOVs. The algorithm achieved this by using the cell types and their positions in the

image to calculate the distance between all CD34+ cells and the nearest cell for CD74+CD68+ cells.

Droplet Digital polymerase chain reaction
Detection of NPM1 c.863_864insTCTG (COSMIC 17559), TP53c842A-T, and idh2 c515 was performed on the QX200 Droplet Digital

PCR system (Bio-Rad Laboratories, Inc., Hercules, CA, USA) using TaqMan(tm) Liquid Biopsy dPCR Assay Hs000000064_rm (Life

Technologies, Carlsbad, CA, USA). The 20 mL reaction mix consisted of 10 mL of 2x ddPCR SuperMix for Probes (Bio-Rad Labo-

ratories), 0.5 mL of the 40X assay, 9.5 mL water and 1 mL of 30–50 ng/mL genomic DNA. The assay was tested by temperature

gradient to ensure optimal separation of reference and variant signals. Cycling conditions for the reaction were 95C for 10 min, fol-

lowed by 45 cycles of 94C for 30s and 60C for 1 min, 98C for 10 min and finally a 4C hold on a Life Technologies Veriti thermal cycler.

Data were analyzed using QuantaSoft Analysis Pro software v1.0.596 (Bio-Rad Laboratories).

Progenitor frequency assays
The clonogenic capacity of leukemic progenitors was evaluated by colony-forming unit (CFU) assays. Briefly, AML cells (500–25000

cells/well) were seeded in semisolid methylcellulose media (Methocult #H4434; Stemcell Technologies) according to established

protocols. Progenitor assays of xenografted leukemic cells were performed following human cell purification as described above.

Individual CFU wells were seeded from multiple mice.

Multivariate survival analysis
TARGET AML and TCGA L-AML RNA sequencing and clinical data were accessed from the NIH National Cancer Institute GDC Data

Portal: https://portal.gdc.cancer.gov/. Cohort sizes were adjusted due to the gene expression and survival (OS and EFS) data readily

accessible through the GDC Data Portal. When filtering the TARGET AML patient cohort to achieve a cohort of patients with consis-

tent induction treatment, we used the Gemtuzumab ozogamicin treatment tab and selected patients with no Gemtuzumab ozoga-

micin treatment from the linked AAML051349 and AAML03P150 trials. These patients received ADE10 (cytarabine 100 mg/m2/dose

(3.3 mg/kg) every 12 h on Days 1–10; dau-norubicin 50 mg/m2/dose once daily (1.67 mg/kg) on Days 1,3, and 5; and etoposide

100 mg/m2/dose (3.3 mg/kg) oncedaily on Days 1–5) without the use of Gemtuzumab ozogamicin.49 Gene scores were calculated

as per quantification and statistical analysis section. Missing clinical data were replaced by Bayesian polytomous regression or lo-

gistic regression. R v3.5.1 (using packages survival v3.2-7, survminer v0.4.8, and mice v3.11.0) were used for this analysis.

QUANTIFICATION AND STATISTICAL ANALYSES

Summarized data are represented as mean ± standard deviation. Statistical comparisons were analyzed using unpaired student’s

t-tests (two-tailed), paired t-tests, one-way analysis of variance tests (ANOVAs) followed by Tukey’s multiple comparison tests,

two-way ANOVAs, Fisher’s exact test., chi square test, or Mantel Cox tests Any deviations from normal distribution or homogeneity

of variances were corrected by log10 transformation prior to parametric statistical tests, unless transformation did not resolve
Cell Reports Medicine 5, 101485, April 16, 2024 e5
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heterogeneity in variances in which non-parametric tests were applied. Datasets that had negative or zero values prior to transfor-

mation to reduce heterogeneity of variances were translated by +1 prior to log transformation. Prism software (version 7.0;

GraphPad), R v3.5.1 (using packages survival v3.2-7, survminer v0.4.8, and mice v3.11.0) and MedCalc software (v20.110) was

used for statistical analysis and p < 0.05 was considered statistically significant unless otherwise specified in the figure captions.

Survival timeswere calculated from the date of sample collection, using previously established criteria for OS and EFS by subtracting

the date of sample collection from the date of death (OS) or from the date of relapse (EFS).51 The expression score from every patient

within a specific probe/genewas normalized to themean expression of that probe to adjust to inter-probe transcriptional variance. To

assign a value of a gene score to each patient, this value was calculated and averaged for each probe/gene of a select gene score.

When dividing patients into high and low scores, the cohort was stratified into gene score high and low by arrangement around the

gene score median. The Kaplan Meier method was used for univariate survival analyses andmultivariate Cox regression was used to

evaluate independent predictors of survival. For multivariate survival analyses, missing data were replaced by Bayesian polytomous

regression or logistic regression. Patients with primary refractory disease were assigned an EFS of 0 days.
e6 Cell Reports Medicine 5, 101485, April 16, 2024
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Figure S1: A battery of assays performed on AML PDXs following cytarabine treatment identifies distinct kinetics of 
AML response. Related to Figure 1.  A. Total number of cells (hCD45Chimerism * Total Cells Harvested) in PDXs throughout a 5-
day AraC treatment time course normalized to Untreated control from AML1-6 PDXs (N=6, n = 9-22 per AML). B Total AML burden 
of AML1 PDXs at Day 0, Day 7 and Day 10 timepoints of a 5-day AraC treatment normalized to Untreated (Day 0) (n = 5-7 per 
timepoint) C UMAP plot of all PDX cells in the analysis anchored by healthy BM, organized by tissue source (n = 78 500). D-F. 
Experimental outline for generating scRNA and paired analyses from AML patient 1, AML patient 3 and a CB donor. G A metric of 
cluster volatility (1 – [Lowest Cluster%/Highest Cluster%]) representing the proportional change of the cluster throughout leukemic 
regeneration of each shared and substantive cluster graphed by each AML (n = 16). Floating bar represents mean of each AML. 
****p<0.0001, *p<0.05, ns p>0.05 by unpaired t tests (B), or paired t tests (G). 
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Table S1: AML patient/sample information and annotation. Related to Figures 1-6:  

 
 
 

Sample ID Clinical Stage Tissue Source
Induction 
Therapy 
Details

Induction 
Treatment 
Success

Relapse
Time in remssion 
OR Time to 
relapse

PDX 
Reponder

Molecular/CG

1 AML Diagnosis PB 7+3 Achieved CR Y 150 Y 46,XX,FLT3 c. 1795_1818dup (70.1%); IDH2 419G>A (44.1%); NPM1 860_863dup (46.7%); DNMT3A 2645G>A (47.0%)

2 AML Diagnosis PB HDAC
Death 
before CR

N/A N/A N
Performed from cyropreserved DNA (GeneSeeq service):
ERCC2: c.477+1G>A ( 51.21%); EZH2: c.382T>A(p.L128I) ( 98.45%); KRAS: c.34G>A(p.G12S) ( 50.06%); ETV6: c.331G>A(p.D111N) ( 
50%); DNMT3A: c.2645G>A(p.R882H) ( 49.29%); MLLT3-KMT2A translocations

3 AML Diagnosis Leukapheresis N/A
Death 
before CR

N/A N/A N

46,XX,del(5)(q22q35)[cp3]/45~46,idem,del(7)(q32)[cp2]/44~46,idem,t(1;12(p13;p13),del(2)(p23)[cp2]/42~46,idem,del(3)(p22p24
),der(3)inv(3)(p21q21)del(3)(q21),del(7)(q32),add(18)(q21),add(20)(p12)[cp13]/ 
44~46,idem,del(1)(p22p32),del(3)(p22p24),del(4)(q21),del(7)(q22q36),del(9)(q22q32),add(12)(q24.1)[cp5], Karyotype was from 
August 28, not at the time of sample collection (this was before the dx of leukemia was made)

4 AML Diagnosis BM 7+3 Achieved CR N 2854 Y
FLT3-D835 inconclusive (<1) CBFß/MYH11 implies abnormality in chromosome 16. Otherwise, this patient has a normal copy 
number. Karyotype was 46, XY [2] however this was low quality, CKIT

5 AML Diagnosis Leukapheresis 7+3 
Persistent 
Disease

N/A N/A N
46,XX[20],Negative for PML/RARA translocation by FISH Normal karyotype according to correspondence from AX; BM exam on 
July 3, 2015, NPM1, FLT3-ITD

6 AML Diagnosis Leukapheresis 7+3 
Persistent 
Disease

N/A N negative for FLT3 D835Y and NPM1

7 AML Diagnosis PB 7+3 Achieved CR N 1115 N/A 46, XX [20], positive NPM1 and FLT3-ITD

8 AML Diagnosis PB 7+3 Achieved CR Y 2609 N/A 46,XY [20], NPM1 positive, FLT3 negative

9 AML Diagnosis BM 7+3 
Persistent 
Disease

N/A N/A N/A 46,XX [20], positive for NPM1 and FLT3-ITD

10 AML Diagnosis PB 7+3 Achieved CR Y Unknown N/A 47,XX,+11[20], IDH2:c.515G>A, p.(Arg172Lys) (49.1%). PTPN11:c.179G>T, p.(Gly60Val) (46.3%), positive for IDH2

11 AML Diagnosis Trephine BM biopsies N/A N/A N/A N/A N/A Unknown

12 AML Relapse Trephine BM biopsies N/A N/A N/A N/A N/A Unknown

13 AML Diagnosis BM 7+3 Achieved CR N 2013 N/A
46,XX,add(4)(q31),t(16;16)(p13;q22)[25], nuc ish(5'MYH11,3'MYH11)x2,(5'MYH11 sep 3'MYH11x1)[188/200] nuc 
ish(5'CBFB,3'CBFB)x2,(5'CBFB sep 3'CBFBx1)[192/200], negative for CKIT

14 AML Diagnosis BM 7+3 Achieved CR N 1896 N/A 46,XX,t(8;21)(q22;q22)[25], positive for CKIT

15 AML Diagnosis BM 7+3 Achieved CR N 4395 N/A 46,XX,inv(16)(p13q22)[25], nuc ish(CBFBx2)(5' CBFB sep 3' CBFBx1)[180/200]

16 AML Diagnosis PB 7+3 Achieved CR N 731 N/A Unknown

17 AML Diagnosis BM 7+3 Achieved CR N 1826 N/A Unknown

18 AML Diagnosis Leukapheresis 7+3 Achieved CR N 1426 N/A 46,XX[8], Normal FISH result nuc ish(PML,RARA)x2[200], positive for FLT3-ITD and NPM1

19 AML Diagnosis BM 7+3 Achieved CR N 2182 N/A 46,XY,t(8;21)(q22;q22)[25]

20 AML Diagnosis BM 7+3 Achieved CR Y 506 N/A 46,XY,inv(16)(p13.1q22)[25], positive for KIT

21 AML Diagnosis PB 7+3 Achieved CR Y 202 N/A 46,XX[11], Normal FISH result nuc ish(CBFBx2)[200]

22 AML Diagnosis PB 7+3 Achieved CR Y 78 N/A 47,XX,+8[4]/46,XX[4], trisomy 8, MLL-[200/200], positive for NPM1 and FLT3-ITD

23 AML Diagnosis PB 7+3 Achieved CR Y 85 N/A 46,XY,+?del(4)(p?15),-22[2].nuc ish(MLLx2)[188], MLL NOT DETECTED BY FISH

24 AML Diagnosis BM 7+3 Achieved CR Y 464 N/A 46,XY[20]

25 AML Diagnosis BM 7+3 Achieved CR Y 520 N/A
46,XY,t(9;11)(p22;q23)[9]/47,sl,+mar[2]/46,XY[3].nuc ish(MLLx2),(5'MLLsep3'MLLx1)[181/200],(MYH11,CBFB)x2[198]. , t(9;11) 
isolated or with other abnormalities, 11q23 (MLL) abnormalities, isolated or with other abnormalities, excluding t(9;11),

26 AML Diagnosis PB 7+3 Achieved CR Y 78 N/A 47,XX,+8[4]/46,XX[4], trisomy 8, MLL-[200/200], positive for NPM1 and FLT3-ITD

27 AML Diagnosis BM 7+3 Achieved CR Y 177 N/A 46,XY [3]

28 AML Diagnosis BM 7+3 Achieved CR Y 294 N/A 46,XX,inv(16)(p13q22)[8], nuc ish(CBFBx2)(5'CBFB sep 3'CBFBx1)[172/200]

29 AML Diagnosis PB 7+3 
Persistent 
Disease

N/A N/A N/A
46,XY,t(1;14)(q32;q32)[5]/46,XY,del(1)(q42)[3]/46,XY[17],Karyotype was initially normal karyotype but then acquired 
abnormalities over the course of therapy. Note that some samples were collected when karyotype was normal.

30 AML Diagnosis BM 7+3 
Persistent 
Disease

N/A N/A N/A 46,XY[24]

31 AML Diagnosis BM 7+3 
Persistent 
Disease

N/A N/A N/A
42~46,X,-Y,t(2;15)(q37;q22),dic(5;17)(q11;p11),+10,add(11)(p15),-17,-18,-21,-22,+2~4mar[cp19]/ 62<3n>,XYY,+1,t(2;15)(q37;q22),-
3,-5,+13,-17,-17,-18,-19,-19,-21,-22[1]/ 80~83<4n>,XXYY,der(1)t(1;11)(q32;q13)x2,t(2;15)(q37;q22)x2,-3,-5,dic(5;17)(q11;p11),-7,-
11,-16,-17,-17,-18,-20,-21,-21,+2mar[cp2]/46,XY[3]

32 AML Diagnosis BM 7+3 
Persistent 
Disease

N/A N/A N/A
46,XX[22], Genetic workup not done at time of sample collection. Later sample collected May 21, 2015 was 74.85% FLT3-ITD 
mutant, FLT3-TKD neg (extra information from Eri Iida clinical file review), positive for NPM1

33 AML Diagnosis BM 7+3 
Persistent 
Disease

N/A N/A N/A 46,XY[20], FLT3 and NPM1 measured prior to sample collection (at UHN prior to referral to LHSC) NEGATIVE

34 AML Diagnosis PB 7+3 
Persistent 
Disease

N/A N/A N/A 47,XY,+8[9]/46,XY[4], 10% (20/200)trisomy 8

35 AML Diagnosis PB 7+3 
Persistent 
Disease

N/A N/A N/A del(5) (q22q33), -7

36 AML Diagnosis BM 7+3 
Persistent 
Disease

N/A N/A N/A 46,XY 

37 AML Diagnosis BM 7+3 
Persistent 
Disease

N/A N/A N/A 46,XY [3]

38a AML Diagnosis PB 7+3 
Persistent 
Disease

N/A N/A N/A Unknown

38b
Persistent 
Disease

PB 7+3 N/A N/A N/A N/A Unknown

39 Relapsed AML Leukapheresis 7+3 Unknown N/A N/A N/A Unknown
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Figure S2: Functionally defined biologically relevant timepoints in AML1 and AML2 reveals transcriptionally defined cell 
clusters 5 and 1, respectively. Related to Figure 2. A Illustration of the increase in progenitor frequency (light grey line) representing 
leukemic regeneration and the decrease in disease burden (dark grey line) representing a state of cytoreduction. B Total # of AML Cells 
(%hCD45 * total cells harvested) and progenitor frequency (CFUs / cells seeded) from sorted CD33+ hCD45+ cells of AML1 PDX 
models over a AraC time course (students t test). C Total # of AML Cells (%hCD45 * total cells harvested) and progenitor frequency 
(CFUs / cells seeded) from sorted CD33+ hCD45+ cells of AML2 PDX models over a AraC time course (students t test). UMAPs of 
AML cells at different timepoints during leukemic regeneration in PDX models of D AML1 and E AML2. F Total number of cells 
belonging to each cluster at untreated and cytoreduced timepoints in AML1 and AML2. G Total number of cells belonging to each cell 
assignment at untreated and cytoreduced timepoints in AML1 and AML2. H Clusters enrichment at regeneration (Cluster % at 
regeneration normalized to untreated control) of AML2 biological triplicates. Composition of REC Clusters 1 and 5 by I cell assignment 
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and J cell cycle phase. K Top 50 HALLMARK KEGG REACTOME and WIKI pathways enriched (ranked by NES Values of GSEA 
analyses) (FDR < 0.01) in REC clusters. 
 

 
Figure S3: Related to Figure 3. RECs from AML patients demonstrate survival predictive capacity A Patient specific UMAP 
plots of all PDX and de novo cells from AML 2-3 highlighting RECs from the PDX system (dark red) and from de novo tissue (dark 
blue) B UMAP plots of all de novo samples (AML1-3, BM1-2, n = 25 996) highlighted by: Clusters 0’ - 17’, tissue source, AML1-3 
RECs and Cluster 0’ (653 DEG), respectively C Multivariate cox regression analyses on TARGET AML cohort (N = 1914) and a 
filtered version of the cohort with uniform induction treatments (N=311) assessing the association of EFS and OS with Regen71 and 
other molecular scores (LSC17, LSCR) and clinical covariates (WBC, ELN, age). D Multivariate cox regression analyses on TCGA 
LAML cohort (N = 151) and Metzeler 2008 (N = 79) assessing correlation to OS of Regen71 alongside other molecular scores (LSC17, 
LSCR) and clinical covariates (WBC, ELN, age) when available. E Multivariate cox regression analyses on TARGET AML cohort 
subdivided by ELN stratifications (N = 890, 659, and 243 for low, intermediate, and adverse risk groups, respectively) assessing 
correlation to EFS of the Regen71 with other molecular scores (LSC17, LSCR) F CD68 expression based on FC and scRNA seq on 
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AML specific de novo REC clusters in AML1 and AML3. G Visuals of the cell clusters from the 10 NPM1 mutated AML patients from 
Naldini 2023 scRNA seq dataset, both as a UMAP plot, and a bar graph of clusters over a time. CD68+ Cluster 1 highlighted in red 
emerged post-chemotherapy H Bar graph of NPM1 mutational profile of cells comprising each cluster of the Panel G scRNA data set.  

 
 
 
Figure S4: Flow Cytometry gating strategies of RECs, showing clinical potential. Related to Figure 4. A Bar graphs (median 
+/- range) of %CD74/CD68 in A remission (N = 9) vs relapse (N = 10, and B remission vs. treatment failure (N = 21) (*p < 0.05, 
unpaired t test) C Representative flow plot of CD74+/CD68+ cells as compared to fluorescent minus one (FMO) controls D 
Representative ancestral gating strategy for CD74+/CD68+ REC population of Panel B E Representative flow plot of a CD45bright SSC 
high monocyte and blast populations of an AML sample and ancestral gating strategy F Three AML samples hCD45 vs. SSC flow 
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cytometry gates with CD74+/CD68+ population backgated (light blue). Location of CD74+/CD68+ cells is interpatient and interpatient 
heterogenous.  
 
 
 
Table S2: ddPCR Primer Details specific to AML patient mutations. Related to Figure 5 

 
 
 
 
 
 
 

Gene Name AA Mutation CDS Mutation Mutation Type Genomic Mutation ID Legacy Identifier Probe ID

IDH2 p.R172K c.515G>A Substitution, missense COSV57468734 COSM33733 IDH2_515_ ANWC34M

NPM1 TCTG p.W288Cfs*12 c.860_863dup Insertion, frameshift COSV51542664 COSM17559 NPM1c.860_863dupTCTG

TP53c.842A>T p.D281V c.842A>T Substitution, missense COSV52815868 COSM45729 TP53c842A-T_AN33JRA



 
Figure S5: RECs demonstrate no stemness gene expression, contribute to OS prediction, and co-localize to CD34+ cells but not 
via proliferation, within leukemic tissue. Related to Figure 5. A Line graph of CD34+ expression of AML samples (N=29) compared 
to the REC population. B Line graph of Tim3, CD90, CD117 CD38, CD123 expression of AML samples (N=4, AML3,6,38,39) 
compared to the REC population C Composition of LSC17+ and LSC- patients by REC+/- profile. LSC and REC (Regen71) high and 
low were decided based on the average normalized expression of the score being above or below the median of the data set. REC+ 
samples are enriched in LSC17+ samples (Fisher’s exact test ****p < 0.0001). D Survival of TARGET AML cohort (N = 1914) by 
Kaplan-Meier curve on the four populations subdivided by REC+/- LSC+/-. REC+/LSC- patients had the lowest OS (p < 0.0001). E The 
change in proportion of ELN stratifications between each REC+/- LSC+/- population (p<0.0001, chi square). F Whole H&E stained 
tissue of AML10 and BM3 used for spatial G UMAP plots of spatial transcriptomics data highlighting areas of CD34, CD68 and CD74 
expression, respectively. H Violin plots of average normalized CD74 and CD68 expression of healthy and AML BM sections between 
CD34+ (n=112 AML n=13 healthy) and CD34- (n=1363 AML, n=2736 healthy) spots. Panel A and E: **p<0.01, ***p<0.001 by unpaired 
t tests). 
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Figure S6: FACS gating strategies for REC purification which does not autonomously contribute to engraftment. 
Related to Figure 6. A Representative FACS gating of bulk AML cells (AML39) for the GOF and LOF experiments, where RECs 
(CD34+/CD68+) and REC depleted (either CD68- or CD74-) are sorted from live single cells. CD19 lymphoid cells were excluded to 
avoid graft vs. host disease in recipient mice. B Purity of sorted RECs (CD34+/CD68+) through the same gating system (~90%) C Purity 
of sorted REC depleted (either CD68- or CD74-) through the same gating system (~100%) D Experimental visual and representative 
flow plot of injected RECs into non engrafted mice to control for REC autonomous regeneration in Figure 6C. No engraftment 
(hCD45+/CD33+) was detected. 
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