

Patricia Favaro^I, Davide Frachina^I, Ke Leow^I, Daniel Ho^I, Trevor Bruce^I, Xiaowei Lu^I, Marc Bosse^I, Richard Drake², Albert G. Tsai^I, Mike Angelo¹, <u>Sean C. Bendall¹</u>

¹Department of Pathology, Stanford University; ²Cell and Molecular Pharmacology, Medical University of South Carolina

- the diverse needs of developing blood cells.
- properties.
- sections.
- cell phenotyping via multiplex ion beam imaging (MIBI).
- (H&E) staining.

Single cell multi-omic mass spectrometry imaging for the human bone marrow microenvironment

Integration of Cell Features & Glycans

Registered MnM (MALDI & MIBI) imaging data were integrated into a single dataset where each pixel retains bimodal information from N-glycans and MIBI probes. SSIM scores indicates successful structural similarity as result of MALDI pixel up-sampling and landmark image registration to MIBI.

						1	Nor	n-neg	gat	ive	n
	-500					C1					
	o-					1		5 e -		1	2
y	1000			*							~
	8										••••
	200		1000	·····	20	00	3000	400	o i	0	10
							1	Тор	10) со	n
							mz		targ	et	
						1	210	0.7347	SMA	7	
						2	201	2.7187	H5N	I5F1	
						3	230	3.8141	H5N	I5F1S1	L
						4	239	1.8301	H5N	I4F1S2	2
						5	230	3.8141	H5N	I5F1S1	L
						6	193	8.6819	H4N	I4F1S1	L
						7	195	5.6972	H5N	14F2	
						8	144	4.5071	H4N	I3F1	
						9	179	3.6444	Hex	4dHex	(2H
						10	162	2.5548	H6N	13	
al	k		< P	I	Р	\bigcirc	∧/ -	. \//	'er	4 11	ır
_	·`` ′C	' an	ς	ר הר	-~ +	ial	 Τr	~vn`) ir	⊷ر ۔ ⊢ ۲	

H&E bright field)

Drake RR **et al.** In Situ Imaging of N-Glycans by MALDI Imaging Mass Spectrometry of Fresh or Formalin-Fixed Paraffin-Embedded Tissue. 2018 2. Liu CC et al. Reproducible, high-dimensional imaging in archival human tissue by multiplexed ion beam imaging by time-of-flight (MIBI-TOF). 2022

Related Presentations

n 5 – 8:30am (WOA Room 210ABC) – Spatial Multi-omics (Single Cell Proteomics, Spatial uman Pregnancy

Poster –-Mikaela Ribi – Mon Jun 3 - MP 291 – MALDI N-Glycomics and High-Grade Glioma

Poster – Davide Franchina – Wed Jun 5 – WP 377 – Co-Spatial Tissue Imaging (Single cell Proteomics, N-Glycomics,

References

72nd Annual Conference of Mass **Spectrometry and Allied Topics** Anaheim, CA

bendall@stanford.edu